Question: Let $f_n$ and $\phi$ be measurable functions on $\mathbb{R}^d$ such that $\int_{\mathbb{R}^d} |f_n(x)|^p |\phi(x)|\, dx \leq M$ for all $n$ where $0 < p \leq 1$. Suppose $f_n \to f$ a.e. Show that $$ \int_{\mathbb{R}^d} [ |f_n(x)|^p - |f(x)|^p - |f_n(x)-f(x)|^p] |\phi(x)|\, dx \to 0$$ as $n \to \infty$.
My attempt: For any $n \in \mathbb{N}$, we have $$||f_n|^p - |f_n|^p|\leq |f - f_n|^p$$ and in particular $$ |f_n|^p - |f|^p - |f_n-f|^p = (|f_n|^p - |f|^p) + (- |f_n - f|^p) \leq 2 |f_n - f|^p$$ So it suffices to show that $\int_{\mathbb{R}^d} |f_n - f|^p |\phi|\to 0$ as $n \to \infty$. For each $k \in \mathbb{N}$ define $$ F_k := |\phi|(|f_k|^p + |f|^p), \quad F := |\phi|(2 |f|^p) $$ then $F_k \to F$ a.e. and by Fatou's lemma $\int_{\mathbb{R}^d} |f|^p |\phi| = \liminf_{k \to \infty} \int_{\mathbb{R}^d} |f_k|^p |\phi|\leq M < \infty$ so $|f|^p |\phi| \in L^1(\mathbb{R}^d)$ and in particular $F_k, F \in L^1(\mathbb{R}^d)$. Since $|f_n-f|^p |\phi| \leq (|f_n|^p + |f|^p)|\phi|$ for all $n$ and if $$\lim_{k \to \infty} \int_{\mathbb{R}^d} F_k = \int_{\mathbb{R}^d} F$$ then by generalised Lebesgue dominated convergence theorem we have $\int_{\mathbb{R}^d} |f_n - f|^p |\phi| \to 0$ as $n \to \infty$.
Therefore, is there any way I can prove the following limit holds $$\lim_{k \to \infty}\int_{\mathbb{R}^d} |\phi|(|f_k|^p + |f|^p)\, dx = \int_{\mathbb{R}^d} 2|\phi||f|^p\, dx$$
Or is there a simpler way to tackle this problem?