First, if $f^{-1}(x) = 1/f(x)$, then we have $$x = f^{-1}(f(x)) = 1/f(f(x)),$$ which is equivalent to requiring $f(f(x)) = 1/x$. This means that every value of $x$ is periodic, belonging to a cycle of the form $$a \mapsto b \mapsto 1/a \mapsto 1/b \mapsto a.$$
Now if $a = \pm 1$, then $a = 1/a$ so we must have $1/b = f(1/a) = f(a) = b$. So such an $f$ will satisfy $f(1) = \pm 1$ and $f(-1) = \mp 1$. It then remains to describe $f(x)$ for $x \in \mathbb{R} \setminus \{0, 1, -1\}$.
Since $x \neq 1/x$ for $x \neq \pm 1$, every element of $\mathbb{R} \setminus \{0, 1, -1\}$ occurs in a 4-cycle $\{a, b, 1/a, 1/b\}$. So let $A$ and $B$ be any uncountable subsets of $\mathbb{R} \setminus \{0, 1, -1\}$ such that the four sets $A$, $B$, $A^{-1}$, and $B^{-1}$ partition $\mathbb{R}\setminus\{0, 1, -1\}$, where $$A^{-1} = \{1/x\ |\ x \in A\},$$ and similarly for $B^{-1}$. Let $g\colon A \to B$ be any bijection. Having fixed $f(1) = c = \pm 1$, define $f \colon \mathbb{R}^\times \to \mathbb{R}^\times$ by
$$
f(x) =
\begin{cases}
c & \text{if $x = 1$} \\
-c & \text{if $x = -1$} \\
g(x) & \text{if $x \in A$} \\
1/g^{-1}(x) & \text{if $x \in B$} \\
1/g(1/x) & \text{if $x \in A^{-1}$} \\
g^{-1}(1/x) & \text{if $x \in B^{-1}$} \\
\end{cases}
$$
An an example, you could take $A = (1, \infty)$, $B = (-\infty, -1)$, and $g(x) = -x$.
Note that each such tuple $(c, A, B, g)$ will give a suitable function $f$, and each such function $f$ arises from a tuple of this form (by choosing for each 4-cycle a "first" element $a$, and declaring $A$ to be the set of these elements), but multiple tuples may correspond to the same function.