Consider the group $\bigoplus_{i=-\infty}^{\infty}\mathbb{Z}_{(i)}$, where each $\mathbb{Z}_{(i)}$ is a copy of $\mathbb{Z}$. Given $x \in \bigoplus_{i=-\infty}^{\infty}\mathbb{Z}_{(i)}$, let $x^{(k)}$ be the element in $\bigoplus_{i=-\infty}^{\infty}\mathbb{Z}_{(i)}$ obtained by shifting every entry of $x$ to the right by $k$ places. Let $x_1, x_2, \ldots, x_n \in \bigoplus_{i=-\infty}^{\infty}\mathbb{Z}_{(i)}$ be some non-zero elements.
I was wondering if there is a "nice description" for the subgroup $$ \langle x_j^{(i)} \mid i \in \mathbb{Z}, 1 \leq j \leq n \rangle. $$ We know that this subgroup is free Abelian (https://mathoverflow.net/q/3405/479955) and infinitely generated. Hence, it is isomorphic to the original group $\bigoplus_{i=-\infty}^{\infty}\mathbb{Z}_{(i)}$.
Any reference about this would be really appreciated.