Hint: if the limit of a fraction tends to a finite number and the denominator tends to $0$, then also the numerator must tend to zero as if not then the limit is infinite (or doesn’t exist).
Apply this after having used l’Hôpital rule to get
$$b=1$$
and then apply l’Hôpital again.
Addendum: we want to prove that if $\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$ and $\lim_{x\to x_0}g(x)=0$ then $\lim_{x\to x_0}f(x)$ is also $0$.
Indeed by definition
$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=1\iff \forall \varepsilon > 0\ \exists \delta |x-x_0|<\delta_1 \implies \left|\frac{f(x)}{g(x)}-1\right|<\varepsilon$$
and
$$\lim_{x\to x_0}g(x)=0\iff \forall \varepsilon > 0\ \exists \delta |x-x_0|<\delta_2 \implies |g(x)|<\varepsilon$$
thus for $\delta = \min(\delta_1,\delta_2)$
\begin{align*}
\left|\frac{f(x)}{g(x)}-1\right|<\varepsilon&\iff |f(x)-g(x)|<\varepsilon\cdot |g(x)|\\
&\implies |f(x)|-|g(x)|<\varepsilon|g(x)|\\
&\iff |f(x)|<(\varepsilon+1)|g(x)|\\
&\iff |f(x)|<(\varepsilon+1)|\varepsilon\\
&\implies |f(x)|<2\varepsilon \tag{$\varepsilon <1$}
\end{align*}
which is by definition saying that $\lim_{x\to x_0}f(x)=0$.