0

I am reading Ireland's A classical introduction to modern number theory. I find it hard to understand a part of a proof in the book. Can anyone explain it for me?

If $(-1)^a5^b \equiv (-1)^{a'}5^{b'}\mod 2^l$, $ l\geq 3$,$\,$ then $(-1)^a \equiv (-1)^{a'} \mod 4$, implying that $a\equiv a' \mod 2$.

Bill Dubuque
  • 272,048
zyy
  • 977
  • By the first dupe and $4\mid 2^l,,$ the congruence persists $!\bmod 4,$ yielding $, (-1)^a\equiv (-1)^{a'}\pmod{!4},,$ so $,a\equiv a'\pmod{!\color{#c00}2},$ by $,{\rm ord}_{:!4}(-1)=\color{#c00}2,$ and mod order reduction (2nd dupe). $\ \ $ – Bill Dubuque Jun 22 '23 at 05:14

0 Answers0