Related: Does non-zero abolute trace of an element $\alpha$ imply the irreducibility of $f(x)=x^p-x-\alpha$
Let $\mathbb{K}=\mathbb{F}_q=\mathbb{F}_{p^w}$ and $\Omega$ be an algebraic closure.
Let $l,k$ be positive integers such that $l$ divides $k$. Define the polynomial, $$T_{l,k}(x)=x+x^{p^l}+x^{p^{2l}}+\dots+x^{p^{(k/l-1)l}}.$$
For any $k$, define the set $\mathcal{A}_k\subset\Omega$ by $a\in \mathcal{A}_k$ if the following hold
$\mathbb{F}_p(a)=\mathbb{F}_{p^k}$.
$T_{1,k}(a)\neq 0$ (This is called the absolute trace of $a$.)
$T_{1,k}(a^{-1})\neq 0$
Define the rational function, $$I(x)=\frac{x^p-1}{x+x^2+\dots+x^{p-1}}.$$
$b$ is an element such that $I(b)=a$.
It can be shown that $1/(1-b)$ is a root of the polynomial $f(x)=x^p-x-a^{-1}$ (see the paper "Fast Contruction of Irreducible Polynomials over Finite Fields" by Couveignes and Lercier page 81)
My question is why is $\mathbb{F}_p(b)=\mathbb{F}_{p^{pk}}$?
We have that $\mathbb{F}_p(a)=\mathbb{F}_{p^k}$ by the definition of $a$, and to add $1/(1-b)$, we need to take the quotient $\mathbb{F}_{p^k}[x]/(f(x))=\mathbb{F}_{p^{pk}}$, but why is this $\mathbb{F}_{p}(b)$?