0

Let $K$ and $L$ be fields (inside a common ambient field) with $L/(K\cap L)$ normal. Is it always true that $[KL:L]=[K:K\cap L]$?

This is true when $K/(K\cap L)$ is a finite Galois extension, but I am having trouble producing a counterexample with $L/(K\cap L)$ is purely inseparable.

1 Answers1

1

Here's a counterexample: Let $F=\mathbb{F}_2(t,u)$, let $\alpha$ be a root of $x^4+tx^2+u$, let $K=F(\alpha)$, let $L=F(t^{1/2},u^{1/2})$.