3

If $x,y\in \mathbb N$ is s.t. $$x+xy+y=55,$$ find $x+y$ ?


I tried to write $x+xy+y=65$ as an equation of $x+y$, but can't go anywhare :

  1. Using the fact that $$xy=\frac{1}{4}((x+y)^2-(x-y)^2,$$ I have that $$x+xy+y=55\iff (x+y)+\frac{1}{4}(x+y)^2-\frac{1}{4}(x-y)^2=65,$$

but I just transposed the problem with $x-y$.

Other things I tried is to replace $xy$ by $$\frac{1}{2}((x+y)^2-x^2-y^2)$$ but still, I can't do anything with $x^2+y^2$.

any idea ?

N. F. Taussig
  • 76,571
joshua
  • 1,001

3 Answers3

2

Disclaimer: I am going to assume that $\mathbb{N}$ includes $0$ since @joshua did not specify.

$x+xy+y=55 \implies x+xy+y+1=(x+1)(y+1)=56$

Since $x, y\in\mathbb{N}$, $x+1, y+1\in\mathbb{Z}^{+}$.

Listing out all the cases, we get that $$\begin{align*} x+y&=0+55=55 \text{ or}\\ &=1+27=28 \text{ or}\\ &=3+13=16 \text{ or}\\ &=6+7=13 \end{align*}$$

Hence, $\boxed{x+y=55, 28, 16 \text{ or } 13}$.

IraeVid
  • 3,216
2

Since the OP did not state exactly what he means by the symbol $\,\Bbb N\,$ (positive integers or nonnegative integers), in my answer I am assuming that $\,x\,$ and $\,y\,$ are nonnegative integers.

As Gerry pointed out, $\,x+xy+y=55\,,\,$ is equivalent to
$\color{blue}{x+1}+\color{red}{xy+y}=56\quad$ which is equivalent to
$\color{blue}{1(x+1)}+\color{red}{y(x+1)}=56\quad$ which is equivalent to
$(x+1)(1+y)=56\quad$ which is equivalent to
$(x+1)(y+1)=56\,,\quad$ consequently,

$x+1=1\quad$ and $\quad y+1=56$

or

$x+1=2\quad$ and $\quad y+1=28$

or

$x+1=4\quad$ and $\quad y+1=14$

or

$x+1=7\quad$ and $\quad y+1=8$

or

$x+1=8\quad$ and $\quad y+1=7$

or

$x+1=14\quad$ and $\quad y+1=4$

or

$x+1=28\quad$ and $\quad y+1=2$

or

$x+1=56\quad$ and $\quad y+1=1$

Hence,

$x+y\in\big\{55,28,16,13\big\}\,.$

In the case that the OP refers to $\,\Bbb N\,$ as the set of all positive integers, it results that, $\,x+y\neq55\,,\,$ consequently,

$x+y\in\big\{28,16,13\big\}\,.$

Angelo
  • 12,328
0

$x+y+xy=55$

$x+y+xy+1=56$

$(x+1)(y+1)=56$

$56=1×56=2×28=4×14=7×8=8×7=4×14=28×2=56×1$

Possible values of $(x,y)$ and $x+y:$

  • $(0,55), 55$
  • $(1,27), 28$
  • $(3,13), 16$
  • $(6,7), 13$
  • $(7,6), 13$
  • $(13,3), 16$
  • $(27,1), 28$
  • $(55,0) , 55.$

We find four unique values for the sum: $$x+y=13\text{ or }16\text{ or }28\text{ or }55.$$

Anne Bauval
  • 34,650
Saby123
  • 175