How can we solve the following quintic in closed form ? $$16x^5-200x^3-200x^2+25x+30=0$$
What is special about this equation? What can we say about solvability? I'm not particularly into math. I saw this equation in a discussion group. Here are some ideas about the equation from non-mathematicians .
There is no closed-form formula for $5$-degree equations. Therefore there is no solution. In my opinion this is wrong. For example, $x^5=1$ can be easily solved. The true version if that idea would be there is no general solution formula . (by radicals)
The equation is not factored. Therefore, there is no closed-form solution. This idea is also wrong in my opinion. Because the factors do not have to be rational numbers.
Wolfram Alpha does not give closed form for the equation. Therefore, it cannot be solved. I cannot comment on this idea.
I found that the quintic is irreducible over $\Bbb Q$.
I've heard a little bit about Galois theory. But I don't have the mathematical knowledge. If possible, could you help to find out if this equation is solvable? The problem author argues that the equation has a solution.
I tried WA software several times. But, it does not succeed.
SolveByRadicals
command, which you can try on their online calculator. The output is too large for me to put here. – Viktor Vaughn Jun 16 '23 at 20:12Factor[30 + 25 x - 200 x^2 - 200 x^3 + 16 x^5, Extension -> Cos[ArcCos[-1/Sqrt[5]]/5]]
– Dmitry Ezhov Jun 17 '23 at 04:41