Such single variable derivatives can be easily computed from first principles using dual numbers as an automatic differentiation tool. Write $$\frac{\partial A}{\partial x} = A’$$ so the dual expansion of $A$ is $A + A’ \varepsilon$. Here $\varepsilon$ can be treated as a scalar for matrix- and vector multiplication.
To find $(A + A’ \varepsilon)^{-1}$ solve $$1 = (A + A’ \varepsilon)(A^{-1} + B \varepsilon) = 1 + (A B + A’ A^{-1}) \varepsilon$$ for $B$. This gives $$(A + A’ \varepsilon)^{-1} = A^{-1} - A^{-1} A’ A^{-1} \varepsilon.$$
Now $a$ and $b$ are constant in $x$ so the dual expansion of your function is $$a^{\mathrm t}(A^{-1} - A^{-1} A’ A^{-1} \varepsilon) b = a^{\mathrm t} A^{-1} b - a^{\mathrm t} A^{-1} A’ A^{-1} b \varepsilon.$$
The $\varepsilon$ coefficient in this expression gives the derivative $$- a^{\mathrm t} A^{-1} A’ A^{-1} b.$$