Let $x_1 = x_{1r}+ix_{1i}$ and $x_2 = x_{2r}+ix_{2i}$
$$|x_{1r}|^2 + |x_{1i}|^2+|x_{2r}|^2+|x_{2i}|^2 = 1$$
Let without loss of generality, $$|x_{1r}|^2 + |x_{1i}|^2 = cos^2\alpha_1$$
Hence $$|x_{2r}|^2+|x_{2i}|^2 = sin^2\alpha_1$$
Hence, $$x_{1r} = cos\alpha_1 \times cos\alpha_2$$
$$x_{1i} = cos\alpha_1 \times sin\alpha_2$$
$$x_{2r} = sin\alpha_1 \times cos\alpha_3$$
$$x_{2i} = sin\alpha_1 \times sin\alpha_3$$
Hence any unit vector is of the the above form for some $\alpha_1,\alpha_2,\alpha_3$.
Orthonormal basis is same as $2 \times 2 $ orthonormal matrix: $$A^{-1} = A^H$$
$$A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}$$
$$A^{-1} = \begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}$$
$$A^H = = \begin{bmatrix}
a^* & c^* \\
b^* & d^*
\end{bmatrix}$$
Now setting $$A^{-1} = A^H$$, we have,
$$a = d^*, b = -c^*$$
Hence columns of the below matrix with $$|a|^2+|b|^2 = 1$$(general form of $a,b$ from first part of this answer) is your set of all orthonormal basis.
$$A = \begin{bmatrix}
a & b \\
-b^* & a^*
\end{bmatrix}$$