Please help me. I'm curious how to solve it.
- Given the cube $ABCD.EFGH$. If $P$ is the point of extension of $HG$, so that $HP:HG=3:2$, then the angle tangent between the lines $AP$ and $HB$ is $\ldots$
(a) $3 \sqrt{2}\quad$ (b) $\dfrac{7\sqrt{2}}{2}\quad$ (c) $4\sqrt{2}\quad$ (d) $\dfrac{9\sqrt{2}}{2}\quad$ (e)$5\sqrt{2}$
- Given the cuboid $ABCD.EFGH$ has $AB=3,$ $BC =2$, dan $AE = \sqrt{12}$. cosine of the angle between the diagonals $AG$ and $HB$ is $\ldots$
(a) $\dfrac{9}{25}\quad$ (b) $\dfrac{8}{25}\quad$ (c) $\dfrac{7}{25}\quad$ (d) $\dfrac{6}{25}\quad$ (e) $\dfrac{4}{25}$