Indeed, it's the logistic map!
Define
$\displaystyle{T\left(n\right) \equiv \mu\left(x_{n} - {1 \over 2}\right)}$ where
$\displaystyle{\mu \in {\mathbb R}}$ is a constant to be determined.
$\displaystyle{x_{0} = {1 \over 2}\left(1 + {1 \over \mu}\right)}$. Then
$$
\mu\left(x_{n + 1} - {1 \over 2}\right)
=
1 - \left\lbrack\mu\left(x_{n} - {1 \over 2}\right)\right\rbrack^{2}
=
1 - {1 \over 4}\,\mu^{2} + \mu^{2}x_{n}\left(1 - x_{n}\right)
$$
$$
x_{n + 1} = {1 \over 2} + {1 \over \mu} - {1 \over 4}\,\mu + \mu x_{n}\left(1 - x_{n}\right)
$$
Set $\displaystyle{{1 \over 2} + {1 \over \mu} - {1 \over 4}\,\mu = 0}$ such that
$\displaystyle{\mu_{\pm} = 1 \pm \sqrt{\,5\,}}$. We choose
$\displaystyle{\mu = 1 + \sqrt{\,5\,}}$. Finally
$$
\left\lbrace%
\begin{array}{rcl}
\\[3mm]&&
\\
x_{n + 1} & = & \mu\,x_{n}\left(1 - x_{n}\right)
\\[4mm]
\mu & = & 1 + \sqrt{\,5\,} \approx 3.2360679775
\\[4mm]
x_{0} & = & {1 \over 2}\,\left(1 + {1 \over \mu}\right) = {3 + \sqrt{\,5\,} \over 8}
\approx
0.65450849718
\\[4mm]
T\left(n\right) & = & \mu\left(x_{n} - {1 \over 2}\right)
\quad\Longrightarrow\quad
-\,{1 \over 2}\,\mu <\ T\left(n\right)\ < {1 \over 2}\,\mu
\\[3mm]&&
\end{array}\right.
$$
By using well known properties of the Logistic Map you can find many interesting properties of your system. With the parameters given above, $\displaystyle{T\left(n\right)}$ converges to 2 values: $0$ and $1$ which are fixed points. In addition, $\displaystyle{\sqrt{\,5\,} - 1 \over 2}$ is another fixed point besides the negative fixed point $\displaystyle{-\,{\sqrt{\,5\,} + 1 \over 2}}$.
$$
\begin{array}{rcl}
T(0) & = & 0.5\\
T(1) & = & 0.75\\
T(2) & = & 0.4375\\
T(3) & = & 0.808594\\
T(4) & = & 0.346176\\
T(5) & = & 0.880162\\
T(6) & = & 0.225315\\
T(7) & = & 0.949233\\
T(8) & = & 0.0989562\\
T(9) & = & 0.990208\\
T(10) & = & 0.0194888\\
T(11) & = & 0.99962\\
T(12) & = & 0.00075948\\
T(13) & = & 0.999999\\
T(14) & = & 1.15362e-06\\
T(15) & = & 1\\
T(16) & = & 2.66151e-12\\
T(17) & = & 1\\
T(18) & = & -1.79638e-16
\end{array}
$$