If $1 < x < e < y$ and $x^{1/x} = y^{1/y}$ then $y > e^2/x$.
Since $x^{1/x}$ is decreasing for $x > e$, this is equivalent to $x^{1/x} \lt (e^2/x)^{x/e^2} $for $1 < x < e$.
Also, it would be nice to find a closer approximation to $y$ than $e^2/x$.
Also $^2$, I realize that this might be better solved using the Lambert-W function.
So, if you want to make a question of this, it could either be "Is there a simpler prrof of this result" or "Is there a better bound for the $y > e$ with $x^{1/x}=y^{1/y}$ than $e^2/x$"?
$f(x) =\dfrac{x^{1/x}}{(e^2/x)^{x/e^2}} $ with $1 < x < e$.
Want to show $f(x) <1 $.
This proof is much more involved than I like.
$\begin{array}\\ g(x) &=\ln(f(x))\\ &=(1/x)\ln(x)-(x/e^2)\ln(e^2/x)\\ &=(1/x)\ln(x)-(x/e^2)(\ln(e^2)-\ln(x))\\ &=(1/x)\ln(x)-(2x/e^2)+(x/e^2)\ln(x)\\ &=(1/x+x/e^2)\ln(x)-(2x/e^2)\\ &=(e^{-y}+e^y/e^2)y-(2e^y/e^2) \qquad x = e^y, 0 < y < 1\\ &=(e^{-y}+e^{y-2})y-2e^{y-2}\\ &=e^{-1}(e^{-y+1}+e^{y-1})y-2e^{y-2}\\ &=\dfrac{2y}{e}\dfrac{e^{-y+1}+e^{y-1}}{2}-2e^{y-2}\\ &=\dfrac{2y}{e}\cosh(-y+1)-\dfrac{2}{e}e^{y-1}\\ &=\dfrac{2}{e}(y\cosh(-y+1)-e^{y-1})\\ &=\dfrac{2}{e}((1-z)\cosh(z)-e^{-z}) \qquad z = 1-y, y = 1-z, 0 < z < 1\\ &=\dfrac{2}{e}h(z) \qquad h(z)=(1-z)\cosh(z)-e^{-z}\\ &=\dfrac{2}{e}\left((1-z)\sum_{n=0}^{\infty} \dfrac{z^{2n}}{(2n)!}-\sum_{n=0}^{\infty} \dfrac{(-1)^nz^n}{n!}\right)\\ &=\dfrac{2}{e}\left(\sum_{n=0}^{\infty} \dfrac{z^{2n}}{(2n)!}-z\sum_{n=0}^{\infty} \dfrac{z^{2n}}{(2n)!}-\sum_{n=0}^{\infty} \dfrac{z^{2n}}{(2n)!}+\sum_{n=0}^{\infty} \dfrac{z^{2n+1}}{(2n+1)!}\right)\\ &=\dfrac{2}{e}\left(-\sum_{n=0}^{\infty} \dfrac{z^{2n+1}}{(2n)!}+\sum_{n=0}^{\infty} \dfrac{z^{2n+1}}{(2n+1)!}\right)\\ &=\dfrac{2}{e}\left(\sum_{n=0}^{\infty} \dfrac{z^{2n+1}(1-(2n+1))}{(2n+1)!}\right)\\ &=-\dfrac{2}{e}\sum_{n=0}^{\infty} \dfrac{2nz^{2n+1}}{(2n+1)!}\\ &\lt 0 \qquad\text{for } z > 0\\ \end{array} $
Therefore $g(x) < 0$ so $f(x) < 1$.
Therefore, if $r(x) = x^{1/x}$, then, if $1 < x < e$, $r(x) \lt r(e^2/x) $.
Since $e^2/x > e$, if $e < y \le e^2/x$, $r(y) \ge r(e^2/x) \gt r(x) $.
Therefore, if $1 < x < e < y \le e^2/x$, or $1 < x < e$ and $xy \le e^2$ then $r(y) > r(x) $.
Therefore if $r(y) = r(x)$ then $y > e^2/x$.