Let $\lambda_{\min}$ be the smallest eigenvalue of the positive definite matrix $\mathbf{S}$, and $\|\mathbf{a}\|=r$. Then $$ \mathbf{a}^T \mathbf{S}\mathbf{a} > \frac{1}{2}\lambda_{\min} r^2 $$
What properties of matrices were used to obtain the result? Thanks!