0

if$f,g\mathpunct{:}\mathbb{R}\to \mathbb{R}$satisfy$f,g,fg\in L^1$,and$\exists T(g(x+T)=g(x))$,Is the following equation valid? $$ \lim_{ n \to \infty} \int_{-\infty}^{+\infty} f(x)g(nx) \, \mathrm{d}x =\frac{1}{T}\int_{0}^{T}g(x) \, \mathrm{d}x \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x $$ The teacher at school taught us the proof when g is bounded. I don't know how to handle general situations

12345
  • 31
  • 2

0 Answers0