$$ \int_0^1\left[\left(\tan ^{-1} x\right)^2-\frac{\ln \left(1+x^2\right)}{1+x^2}\right] d x $$
What I did :
Substitute$$ x=\tan \theta $$
$$ \int_0^{\pi / 4}(\theta)^2 \sec ^2 \theta -\ln \left(\sec ^2 \theta\right) d \theta $$
But now I can't integrate the first term. Thanks in advance.