Consider an initial square of side length $s$. Construct an infinite sequence of decreasing squares:
For each square, the radius of the incircle ($r_{\text{incircle}}$) and the circumcircle ($r_{\text{circumcircle}}$) can be calculated as follows:
- For the first square: $r_{\text{incircle1}} = \frac{s}{2}$, $r_{\text{circumcircle1}} = \frac{s}{\sqrt{2}}$
- For the second square: $r_{\text{incircle2}} = \frac{s}{2\sqrt{2}}$, $r_{\text{circumcircle2}} = \frac{s}{2}$
- For the third square: $r_{\text{incircle3}} = \frac{s}{4}$, $r_{\text{circumcircle3}} = \frac{s}{2\sqrt{2}}$
The area of each annulus is then the difference between the area of the circumcircle and the area of the incircle:
- $A_{\text{annulus1}} = \pi (r_{\text{circumcircle1}}^2) - \pi (r_{\text{incircle1}}^2) = \frac{\pi s^2}{4}$
- $A_{\text{annulus2}} = \pi (r_{\text{circumcircle2}}^2) - \pi (r_{\text{incircle2}}^2) = \frac{\pi s^2}{8}$
- $A_{\text{annulus3}} = \pi (r_{\text{circumcircle3}}^2) - \pi (r_{\text{incircle3}}^2) = \frac{\pi s^2}{16}$
The total area is
\begin{align*} A_{\text{total}} &= A_{\text{annulus1}} + A_{\text{annulus2}} + A_{\text{annulus3}} + \ldots\\ &= \frac{\pi s^2}{4} + \frac{\pi s^2}{8} + \frac{\pi s^2}{16} + \ldots\\ &= \frac{\pi s^2}{4}\cdot\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \end{align*}
The area of the initial circumcircle
$$A_{\text{circle}} = \pi \cdot r_{\text{circumcircle1}}^2 = \frac{\pi s^2}{2}$$
So
$$A_{\text{total}} = A_{\text{circle}}$$
$$\frac{\pi s^2}{4}\cdot\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\pi s^2}{2}$$
Thus
$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n=2$$
Question
Is that a correct proof?
Reference: Why is $\sum_{n=0}^{\infty }\left ( \frac{1}{2} \right )^{n}= 2$?