What is the condition that a test function $f(t^{\prime},t^{\prime\prime})$ has to satisfy in order that:
$$\lim_{t\rightarrow t_{0}}\int_{t_{0}}^{t}dt^{\prime}\int_{t_{0}}^{t^{\prime}}dt^{\prime\prime}\:f(t^{\prime},t^{\prime\prime})\,\delta^{\prime}(t^{\prime\prime}-t^{\prime})\,=\,0\quad?$$ where
$$\delta^{\prime}(t^{\prime\prime}-t^{\prime})=\frac{d}{dt^{\prime\prime}}\delta(t^{\prime\prime}-t^{\prime})$$ with $\delta(t^{\prime\prime}-t^{\prime})$ is the Dirac delta function.