Consider the following quadratic equation:
$$x^2-4x-1 = 0 \tag{1}$$
Whose solutions are denoted by $x_1, x_2\in \mathbb{R}$. Then by using the fact that $x_1+x_2 = 4$ and $x_1x_2 = -1$, how can we evaluate $\sqrt[3]{x_1}+\sqrt[3]{x_2}$?
$$\begin{align}\biggr(\sqrt[3]{x_1}+\sqrt[3]{x_2}\biggr)^3 &= x_1+3(\sqrt[3]{x_1})^2\sqrt[3]{x_2}+3(\sqrt[3]{x_1})(\sqrt[3]{x_2})^2 + x_2\\\ &= (x_1+x_2) + 3(\sqrt[3]{x_1})^2(\sqrt[3]{x_2})+3(\sqrt[3]{x_1})(\sqrt[3]{x_2})^2 \\\ &= 4+3\biggr((\sqrt[3]{x_1})^2(\sqrt[3]{x_2})+(\sqrt[3]{x_1})(\sqrt[3]{x_2})^2\biggr) \\\ &= 4+3\biggr((\sqrt[3]{x_1})\sqrt[3]{x_1x_2} +(\sqrt[3]{x_2})\sqrt[3]{x_1x_2}\biggr) \\\ &= 4-3\biggr(\sqrt[3]{x_1}+\sqrt[3]{x_2}\biggr) \tag{2}\end{align}$$
However, I am not sure where this would lead us. Could I hear your feedback, if possible?