Hint Using the symmetry of the integrand and applying $u$-substitution to the Gaussian integral gives:
$$\int_0^\infty e^{-a^2 x^2} \,dx = \frac{\sqrt\pi}{2 a} .$$
Differentiating with respect to $a$ gives
$$-2 a\int_0^\infty x^2 e^{-a^2 x^2} \,dx = -\frac{\sqrt\pi}{2 a^2} ,$$ and then rearranging gives $$\int_0^\infty x^2 e^{-a^2 x^2} \,dx = \frac{\sqrt\pi}{4 a^3} .$$
Now, differentiate again.
We get $$-2 a\int_0^\infty x^4 e^{-a^2 x^2} \,dx = -\frac{3\sqrt\pi}{4 a^4},$$ so $$\boxed{\int_0^\infty x^4 e^{-a^2 x^2} \,dx = \frac{3\sqrt\pi}{8 a^5}} .$$ Taking $a = \frac{1}{\sqrt{2}}$ gives $$\boxed{\int_0^\infty x^4 e^{-\frac{1}{2} x^2} \,dx = 3 \sqrt\frac{\pi}{2}} .$$
More generally we have
$$\int_0^\infty x^k e^{-a^2 x^2} \,dx = \frac{1}{2 a^{k + 1}} \int_0^\infty t^\frac{k - 1}{2} e^{-t} = \frac{1}{2 a^{k + 1}} \Gamma\left(\frac{k + 1}{2}\right) ,$$ where $\Gamma$ denotes the gamma function