Prove the following inequality:
$$\sum^n_{k=1} (k-1)^3 < \frac{n^4}{4}<\sum^n_{k=1} k^3$$
Attempt:
By induction, we have:
Base Case: $$(1-1)^3< \frac{1^4}{4}< 1^3$$
Inductive step:
Assume it's true for $n=k$, then
Thesis:
$$\sum^k_{a=1}a^3 < \frac{(k+1)^4}{4}<\sum^{k+1}_{a=1} (a+1)^3$$
Demonstration:
If $\frac{k^4}{4}<\sum^{k}_{a=1} a^3,$ then $$\frac{(k-1)^4+4k^3}{4}<\sum^k_{a=1}(a-1)^3 < \frac{k^4}{4}$$ Adding $k^3$ on both sides, we have: $$\frac{(k-1)^4+4k^3}{4}<\sum^{k+1}_{a=1}(a+1)^3+ k^3 < \frac{ k^4+4k^3}{4}$$ $$(k-1)^4<k^4$$
I got here, but I don't know what to go on, or if it concludes anything. I would like help
$$$$
Assume it's true for $n=m$, then $$$$ Thesis:
$$\sum^{m+1}{k=1}(k-1)^3 < \frac{(m+1)^4}{4}<\sum^{m+1}{k=1} k^3$$
– Adam Rubinson May 28 '23 at 20:27