Can someone check my proof for $(2n)! ≥ 2^n (n!)^2$ for positive integers?
- Base case $$\begin{align*}(2\cdot1)! &\geq 2^1 (1!)^2,\\ 2 &\geq 2\end{align*}$$ true for $n=1$
- Assume true for $n=k:$ $$(2k)! \geq 2^k (k!)^2.$$ Let $n = k+1.$ $$(2k+2)! ≥ 2^{k+1} \times ((k+1)!)^2.$$ By assumption, $$\begin{align*}(2k)! &\geq 2^k \times (k!)^2\\ (2k+2)! &\geq ((2^k)(k!)^2)(2k+1)(2k+2)\\ &\geq (2^k \times (k!)^2)(4k^2 + 6k +2)\\ &\geq (2^k \times (k!)^2)(12)&\text{since $k ≥ 1$}\\ &\geq 2^{k+1} \times 6 \times (k!)^2\\ &\geq 2^{k+1} \times 6 \times((k+1)(k!)/(k+1))^2\\ &\geq 2^{k+1} \times 6 \times ( (k+1)!/2)^2 &\text{since $k ≥1$}\\ &\geq 2^{k+1} \times 1.5 ((k+1)!)^2\\ &\geq 2^{k+1} \times ((k+1)!)^2.\end{align*}$$ Therefore true for $n=k+1.$