How to evaluate $$ \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{n!}}? $$
My Attempt:
For each $n = 1, 2, 3, \ldots$, let us put $$ s_n := \sqrt[n]{\frac{n^n}{n!}}. $$
We note that $$ \begin{align} \sqrt[n]{\frac{n^n}{n!}} &= \frac{\sqrt[n]{n^n}}{\sqrt[n]{n!}} \\ &= \frac{n}{\sqrt[n]{n!}} \\ &\geq \frac{n}{\sqrt[n]{n \times \cdots \times n}} \\ &= \frac{n}{\sqrt[n]{n^n}} \\ &= \frac{n}{n} = 1 . \end{align} \tag{1} $$ Moreover, we also have $$ \begin{align} \frac{s_{n+1}}{s_n} &= \frac{ \frac{n+1}{\sqrt[n+1]{(n+1)!}} }{ \frac{n}{\sqrt[n]{n!}} } \\ &= \frac{n+1}{n} \frac{\sqrt[n]{n!} }{\sqrt[n+1]{(n+1)!} } \\ &= \frac{n+1}{n} \frac{1}{\sqrt[n+1]{n+1} } \big( n! \big)^{\frac{1}{n} - \frac{1}{n+1} } \\ &= \frac{1}{n} \big( n+1 \big)^{1 - \frac{1}{n+1} } \big( n! \big)^{ \frac{1}{n(n+1)} } \\ &= \end{align} $$
How to proceed from here?
Or, can we show that this sequence is (or is not) a Cauchy sequence?