If you want to go beyond the limit, let $x=\frac \pi 2-t$.
$$y=\big(\csc(t) \big)^{\sin(t)}\quad \implies \log(y)=\sin(t)\,\log\big(\csc(t) \big)$$ Now, using Taylor around $t=0^+$
$$\csc(t)=\frac{1}{t}+\frac{t}{6}+\frac{7 t^3}{360}+O\left(t^5\right)$$
$$\log\big(\csc(t) \big)=-\log (t)+\frac{t^2}{6}+\frac{t^4}{180}+O\left(t^6\right)$$ Multiply by the usual series expansion of $\sin(t)$
$$\log(y)=-t \log (t)+\frac{1}{6} t^3 (\log (t)+1)-\frac{1}{360} t^5 (3 \log (t)+8)+O\left(t^7\right)$$
Now
$$y=e^{\log(y)}=1-t \log (t)+\frac{1}{2} t^2 \log ^2(t)+\cdots$$
Compare the plots to see how good (or bad) is the approximation