Notice that: $$
\sqrt[3]{3x^2-x^3}+x=\sqrt[3]{x^3\left(\frac3x-1\right)}+x=x\left(\sqrt[3]{\frac3x-1}+1\right)= \frac{\sqrt[3]{\frac3x-1}+1}{\frac1x}$$
This is a "$\frac00$" situtation when $x\rightarrow\infty$, so we can use L'Hôpital's rule when we pass to the limits, so:
$$\lim\limits_{x\rightarrow\infty}\left(\sqrt[3]{3x^2-x^3}+x\right)=\lim\limits_{x\rightarrow\infty}\frac{\sqrt[3]{\frac3x-1}+1}{\frac1x}=\lim\limits_{x\rightarrow\infty}\frac{\left(\sqrt[3]{\frac3x-1}+1\right)'}{\left(\frac1x\right)'}$$
$$=\lim\limits_{x\rightarrow\infty}\frac{\frac13\left(-\frac{3}{x^2}\right)\left(\frac3x-1\right)^{-2/3}}{-\frac{1}{x^2}}=\lim\limits_{x\rightarrow\infty}\left(\frac3x-1\right)^{-2/3}=\frac{1}{\sqrt[3]{(-1)^2}}=1$$
Hence the final result is: $$\lim\limits_{x\rightarrow\infty}\left(\sqrt[3]{3x^2-x^3}+x\right)=1$$