1

This is the integral I am struggling with: $$ \int_{U}^{\alpha} \frac{dE}{\sqrt{(\alpha-E)(E-U)}} $$ The solution claims it is $\pi$. However using an integral calculator, the integral seems to be zero.

Kenny Wong
  • 32,192
wong tom
  • 190

2 Answers2

1

Assuming $U<\alpha$, we may define a new variable of integration $\theta$ through the equation $E=U+(\alpha-U)\sin^2\theta$. Then \begin{align} \int_{U}^{\alpha} \frac{dE}{\sqrt{(\alpha-E)(E-U)}}&= \int_0^{\pi/2}\frac{2(\alpha-U)\sin\theta\cos\theta\,d\theta}{\sqrt{(\alpha-U)\cos^2\theta\,(\alpha-U)\sin^2\theta}} \\ &=2\int_0^{\pi/2}d\theta = \pi. \end{align}

Gonçalo
  • 9,312
0

Some clarification:

The correct domain should be $a \ge U$. Otherwise, we result in a negative area.

How did the integral calculator arrive at $0$? The entire graph of the integrand is above the horizontal axis, = no negative area/sign.

$$(\alpha - E)(E - U) = -\alpha U + (\alpha + U)E - E^2 \\ \xrightarrow{\text{completeSquare}} \left(\dfrac{\alpha - U}{2}\right)^2 - \left(E - \dfrac{\alpha + U}{2}\right)^2$$

$$\therefore \int{\dfrac{dE}{\sqrt{\left(\dfrac{\alpha - U}{2}\right)^2 - \left(E - \dfrac{\alpha + U}{2}\right)^2}}} \\ = -\arcsin{\left( \dfrac{2E - U - \alpha}{U - \alpha} \right)} + C, \quad \alpha \ge U $$

Hence,

$$\int^{\alpha}_{U}{\dfrac{1}{\sqrt{(\alpha - E)(E - U)}}} = \left. -\arcsin{\left( \dfrac{2E - U - \alpha}{U - \alpha} \right)} \right|_{U}^{\alpha} \\ = \left(-\arcsin{\left( \dfrac{2\alpha - U -\alpha}{U - \alpha} \right)} +\arcsin{\left( \dfrac{2U - U -\alpha}{U - \alpha} \right)}\right) \\ = -\arcsin{(-1)} + \arcsin{(1)} \\ = \pi$$

Dstarred
  • 2,487