Find all functions $f: \Bbb{R} \to \Bbb{R}$ which satisfy:
$xf(x+y)+f(y)=f(y)f(x+1)+f(x^2)$
\begin{align} & \text{let } P(x, y): xf(x+y)+f(y)=f(y)f(x+1)+f(x^2). \\ P(0, y): \; & f(y)=f(y)f(1)+f(0). \\ \Rightarrow \; & f(y)(1-f(1))=f(0). \\ \text{ if } \; & f(1) \neq 1: \\ & f(y)=c, xc+c=c^2+c, c=0 \rightarrow \boxed{f \equiv 0}. \\ \text{if } \; & f(1)=1: f(0)=0.\\ P(x, 0): \; & xf(x)=f(x^2). \end{align}
Here's my attempt and effort, but can't do somethin' else. Can anyone help me solve this F.E.?
(This problem is from Olympiad similarities collection.)