If the $\sin(ax)$ function is replaced by $\cos (ax)$, it's well known and can be solved by many ways. But if we want to solve the sine version integral, i.e.
$$I=\int_0^\infty \frac{\sin(ax)}{b^2+x^2}~dx$$
It seems not that trivial as thought. Let $x=bt, k=ab,$
$$I=\frac{1}b\int_0^\infty \frac{\sin(kt)}{1+t^2}~dt,~~~~F=F(k)=\int_0^\infty \frac{\sin(kt)}{1+t^2}~dt$$ Now, we compute $F$:
$$F'=\int_0^\infty \frac{t\cos(kt)}{1+t^2}~dt~~ \overset{\theta=kt}{\longrightarrow} ~~F'=\int_0^\infty \frac{\theta\cos(\theta)}{k^2+\theta^2}d\theta$$
Take second derivative
$$F''=-\int_0^\infty \frac{2k\theta\cos(\theta)}{(k^2+\theta^2)^2}d\theta=\int_0^\infty k\cos(\theta)d\left(\frac{1}{k^2+\theta^2}\right)$$ Integration by part
$$F''=-\frac{1}k+\int_0^\infty \frac{k\sin(\theta)}{k^2+\theta^2}d\theta~~ \overset{\theta=kt}{\longrightarrow} ~~F''=-\frac{1}k+\int_0^\infty \frac{\sin(kt)}{1+t^2}dt$$ Therefore,
$$F''(k)=-\frac{1}k+F(k)$$
Solve this 2nd order inhomogeneous differential equation and we get
$$F(k)=c_1 e^k+c_2 e^{-k}+\text{P.V}\left(\frac{1}2e^k\int_k^\infty \frac{e^{-t}}{t}dt+\frac{1}2e^{-k}\int^k_{-\infty} \frac{e^{t}}{t}dt\right)$$
Define: $\displaystyle\text{Ei}(z)=\text{P.V}\left(-\int_{-z}^\infty \frac{e^{-t}}{t}dt\right)$, we get
$$F(k)=c_1 e^k+c_2 e^{-k}+\frac{1}2\left(-e^k\text{Ei}(-k)+e^{-k}\text{Ei}(k)\right)$$
From the integral $\displaystyle F(k)=\int_0^\infty \frac{\sin(kt)}{1+t^2}~dt$ we can see $F(0)=0$ and $\displaystyle\lim_{k\to\infty} F(k)$ is bounded, hence, $c_1=c_2=0$
$$\int_0^\infty \frac{\sin(kt)}{1+t^2}~dt=\frac{-e^k\text{Ei}(-k)+e^{-k}\text{Ei}(k)}2$$
Finally,
$$\boxed{\int_0^\infty \frac{\sin(ax)}{b^2+x^2}~dx=\frac{-e^{ab}\text{Ei}(-ab)+e^{-ab}\text{Ei}(ab)}{2b}}$$
It seems this is the simplest form I can get. Are there other simple ways to solve this integral, such as contour integral, etc?