0

Let $a_k = 8^{3k} + 8^{3k-1}+8^{3k-2} $, with $k$ being a natural number greater than $0$.

Determine all $k$ such that $6 \ | \ a_k-2$.

My attempt is to reduce $8$ as $8\equiv 2 \bmod 6$.

Then we can say that $2\equiv 2^{3k} + 2^{3k-1}+2^{3k-2} \bmod 6$.

Thus $2 \ | \ 2^{3k} + 2^{3k-1}+2^{3k-2}-2$.

Then we have to find $k$ such that $1\equiv 2^{3k} + 2^{3k-1}+2^{3k-2} \bmod 3$.

And we also have $3\ |\ 2^{3k}-1$ and $3 \ | \ 2^{3k-1}-1$ and $3 \ | \ 2^{3k-2}-2$.

Then $1\equiv 2^{3k} + 2^{3k-1}+2^{3k-2} \bmod 3$ for all $k$.

Thus the solution of the problems are all of the natural numbers greater than $0$.

Please help me with this question.

Jyrki Lahtonen
  • 133,153

1 Answers1

-1

It is known that $2 | a_{k}−2$.

So we only need to find k, such that $8^{3k}+8^{3k-1}+8^{3k-2}-2\equiv 0 \pmod 3$.

We have $$8^{3k}+8^{3k-1}+8^{3k-2}-2\equiv (-1)^{3k}+(-1)^{3k-1}+(-1)^{3k-2}+1=2(-1)^{3k}+(-1)^{3k-1}+1=(-1)^{3k}+1 \pmod 3$$

If $(-1)^{3k}+1 \equiv 0 \pmod 3$, we have $2 \nmid k$.

Itoz Darbien
  • 466
  • 16