Let $A=\left(A_{i j}\right)$ be an $n \times n$ symmetric matrix, and define the function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ as $$ f(x):= \frac{1}{2} ⟨x,Ax⟩ $$ Using the definition, determine the second-order derivative $D^2 f(a) \in \operatorname{Hom}^2\left(\mathbb{R}^n, \mathbb{R}\right)$. (Here, $\operatorname{Hom}^2\left(\mathbb{R}^n, \mathbb{R}\right)$ refers to the space of bilinear maps $\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$.).
I have found the derivative using the definition, that is $a^TA$, and I know that the definition of the second-order derivative is $\left(D^2 f\right)(a):=D(D f)(a) \in \operatorname{Hom}^2\left(\mathbb{R}^n, \mathbb{R}^m\right)$, but I don't know how to use this to find the second-order derivative.