In general, $$
\int_0^{\infty} \frac{x^a-x^b}{\left(1+x^c\right) \ln x}=\ln \left|\frac{\csc \frac{\pi(b+1)}{c}+\cot \frac{\pi(b+1)}{c}}{\csc \frac{\pi(a+1)}{c}+\cot \frac{\pi(a+1)}{c}}\right|
$$
Proof:
Feynman’s trick again used here by letting $$I(a)=\int_0^{\infty} \frac{x^a-x ^b}{\left(1+x^c\right) \ln x}$$
where $I(b)=0$.
As usual, differentiating $I(a)$ w.r.t. $a$ yields
$$
\begin{aligned}
I^{\prime}(a) & =\int_0^{\infty} \frac{x^a}{1+x^c} d x =\frac{\pi}{c} \csc \left(\frac{\pi(a+1)}{c}\right)
\end{aligned}
$$
where the last step comes from the post.
Integrating $I^{\prime}(a)$ w.r.t $a$ from $b$ to $a$ gives
$$
\begin{aligned}
I(a)-I(b)&=\frac{\pi}{c} \int_b^a \csc \left(\frac{\pi(t+1)}{c}\right) d t \\
I(a)&=-\left[\ln \left|\csc\left(\frac{\pi(t+1)}{c}\right)+\cot \left(\frac{\pi(t+1)}{c}\right)\right| \right]_b^a\\&= \ln \left|\frac{\csc \frac{\pi(b+1)}{c}+\cot \frac{\pi(b+1)}{c}}{\csc \frac{\pi(a+1)}{c}+\cot \frac{\pi(a+1)}{c}}\right|\\\\
\end{aligned}
$$
For examples,
$$\int_0^{\infty} \frac{x^{\frac23}-x^{\frac14}}{\left(1+x^2\right) \ln x}= \ln \left(\frac{\sec \frac{\pi}{3}+\tan \frac{\pi}{3}}{\sec \frac{\pi}{8}+\tan \frac{\pi}{8}}\right)
= \ln \left(\frac{2+\sqrt{3}}{\sqrt{2(2-\sqrt{2})}+\sqrt{2}-1}\right) $$
$$\int_0^{\infty} \frac{\sqrt x-\sqrt[3]x}{\left(1+x^3\right) \ln x}= \ln \left(\operatorname{csc} \frac{4 \pi}{9}+\cot \frac{4 \pi}{9}\right) \approx 0.1754258$$