Before proving this claim, it is important to clarify the notation. Given a function $f:M_{m\times n}(\Bbb C)\to \Bbb C$, we define its derivative $\frac{\partial f(X)}{\partial X}$ as another $m\times n$ matrix $D_f=[d_{i,j}]_{m\times n}$ such that
$$
d_{i,j}=\frac{\partial f(X)}{\partial x_{i,j}},
$$
where the differentiation has been performed w.r.t. $X=[x_{i,j}]_{m\times n}$. Now, by defining $Y=X^TX=[y_{i,j}]_{n\times n}$, we have $y_{i,j}=\sum_{k=1}^mx_{k,i}x_{k,j}$ and we can write
$$
\frac{\partial f(X^TX)}{\partial x_{i,j}}{
=
\sum_{\mu=1}^n\sum_{\nu=1}^n\frac{\partial f(X^TX)}{\partial y_{\mu,\nu}}\frac{\partial y_{\mu,\nu}}{\partial x_{i,j}}
\\=
\sum_{\mu=1}^n\sum_{\nu=1}^n\frac{\partial f(X^TX)}{\partial y_{\mu,\nu}}\frac{\partial \sum_{\kappa=1}^mx_{\kappa,\mu}x_{\kappa,\nu}}{\partial x_{i,j}}
\\=
\sum_{\mu=1\\\mu\ne j}^n\sum_{\nu=1\\\nu\ne j}^n\frac{\partial f(X^TX)}{\partial y_{\mu,\nu}}\frac{\partial \sum_{\kappa=1}^mx_{\kappa,\mu}x_{\kappa,\nu}}{\partial x_{i,j}}
\\+
\sum_{\nu=1\\\nu\ne j}^n\frac{\partial f(X^TX)}{\partial y_{j,\nu}}\frac{\partial \sum_{\kappa=1}^mx_{\kappa,j}x_{\kappa,\nu}}{\partial x_{i,j}}
\\+
\sum_{\mu=1\\\mu\ne j}^n\frac{\partial f(X^TX)}{\partial y_{\mu,j}}\frac{\partial \sum_{\kappa=1}^mx_{\kappa,\mu}x_{\kappa,j}}{\partial x_{i,j}}
\\+
\frac{\partial f(X^TX)}{\partial y_{j,j}}\frac{\partial \sum_{\kappa=1}^mx_{\kappa,j}x_{\kappa,j}}{\partial x_{i,j}}
\\=
0
+
\sum_{\nu=1\\\nu\ne j}^n\frac{\partial f(X^TX)}{\partial y_{j,\nu}}x_{i,\nu}
+
\sum_{\mu=1\\\mu\ne j}^n\frac{\partial f(X^TX)}{\partial y_{\mu,j}}x_{i,\mu}
+
\frac{\partial f(X^TX)}{\partial y_{j,j}}2x_{i,j}
\\=
\sum_{\nu=1\\\nu\ne j}^n\frac{\partial f(X^TX)}{\partial y_{j,\nu}}2x_{i,\nu}
+
\frac{\partial f(X^TX)}{\partial y_{j,j}}2x_{i,j}
\\=
\sum_{\nu=1}^n\frac{\partial f(X^TX)}{\partial y_{j,\nu}}2x_{i,\nu}.
}
$$
From here, $\frac{\partial f(X^TX)}{\partial y_{i,j}}$ are the entries of $\frac{\partial f(X^TX)}{\partial X^TX}$. Therefore, according to definition of matrix multiplication, $\sum_{\nu=1}^n\frac{\partial f(X^TX)}{\partial y_{j,\nu}}2x_{i,\nu}$ are the entries of $2X\frac{\partial f(X^TX)}{\partial X^TX}$ and the proof is complete $\blacksquare$