$$\lim_{x\to\infty}\{f(x)-g(x)\}=\lim_{x\to\infty}\{\sqrt{x^2-3x}-x\}$$
$$=\lim_{h\to0}\frac{\sqrt{1-3h}-1}h(\text{ putting } x=\frac1h)$$
Now this can be handled in at least three ways :
Method $1:$
Taylor expansion:
$$\lim_{h\to0}\frac{(1-3h)^{\frac12}-1}h=\lim_{h\to0}\frac{1-3h\cdot\frac12+O(h^2)-1}h=-\frac32$$
Method $2:$
L'Hosiptals' Rule :
$$\lim_{h\to0}\frac{(1-3h)^{\frac12}-1}h=\lim_{h\to0}\frac{\frac12\cdot\frac1{\sqrt{1-3h}}\cdot(-3)}1=-\frac32$$
Method $3:$
Rationalizing the numerator like Adriano,
$$\lim_{h\to0}\frac{\sqrt{1-3h}-1}h=\lim_{h\to0}\frac{(1-3h)-1}{h(\sqrt{1+3h}+1)}$$
$$=\lim_{h\to0}\frac{-3}{\sqrt{1+3h}+1}(\text{ Cancelling } h\text{ as }h\ne0\text{ as }h\to0 )$$
$$=-\frac32$$