If you use the complex representation of the arctangent function
$$\tan^{-1}(t)=\frac{i}{2} \log{\left ( \frac{i+t}{i-t}\right )}$$ the antiderivative is not too difficult.
But, for the fun, consider the series expansions. In other words,
$$I_1=\int_0^{\frac \pi {12}}\log (\tan (x))\,dx$$
$$\large\color{blue}{I_1=\frac{\pi}{12} \log \left(\frac{\pi }{12 e}\right)+\sum_{n=1}^\infty \frac{ \left(4^n-2\right) \pi^{2
n+1} \left| B_{2 n}\right| }{3^{2 n+1} 2^{2n+3} n \Gamma (2 n+2)}}$$
$$I_3=\int_0^{\frac \pi {12}}\log (\tan (3x))\,dx$$
$$\large\color{blue}{I_3=\frac{\pi}{12} \log \left(\frac{\pi }{4 e}\right)+\sum_{n=1}^\infty \frac{ \left(4^n-2\right) \pi ^{2 n+1} \left| B_{2
n}\right| }{3\, 2^{2 n+3}n \Gamma (2 n+2)}}$$
Limit the summation to $p$ terms of your choice and compute
$$k_p=\frac {I_3^{(p)}}{I_1^{(p)}}$$
Notice that
$$k_0=\frac{\log \left(\frac{\pi }{4 e}\right)}{\log \left(\frac{\pi }{12 e}\right)}=0.530543 \qquad \qquad \huge\color{red}{!!!}$$
Now a few more accurate values
$$\left(
\begin{array}{cc}
p & k_p \\
0 & 0.530543 \\
1 & 0.502892 \\
2 & 0.500370 \\
3 & 0.500056 \\
4 & 0.500009 \\
5 & 0.500002 \\
6 & 0.500000 \\
\end{array}
\right)$$
$\tan$
gives $\tan$. – Sean Roberson May 09 '23 at 16:20