$\{S_n\}= \sum_{k=1}^n\frac{1.3.5.7..(2k-1)}{3.6.9..(3k)}$
I applied the D Alembert Ratio test on:
$S_\infty=\frac{1}{3}+\frac{1.3}{3.6}+\frac{1.3.5}{3.6.9}+\frac{1.3.5.7..(2k-1)}{3.6.9..(3k)}$ as $k$ tends to $\infty$
so, $\frac{a_n}{a_{n+1}}=\frac{(3n+1).(3n+2).(3n+3)}{2n.(2n+1)}$ which will go to $\infty (>1)$ as $n$ tends $\infty$, so the series is convergent.
But how to find the actual limit of the series? Kindly help.