According to the property of the Laplace transform if $f(t)=\mathcal{{L}}^{-1}_s\left(F(s)\right)$, then $f(t)=-\frac{1}{t}\mathcal{{L}}^{-1}_s\left(\frac{d}{ds}\left(F(s)\right)\right)$.
This works for $F(s)=\ln\left(\frac{s+1}{s+2}\right)=\ln(s+1)-\ln(s+2)$.
So $f(t)=-\frac{1}{t}\mathcal{{L}}^{-1}_s\left(\frac{1}{s+1}-\frac{1}{s+2}\right)=-\frac{1}{t}{e^{-t}-e^{-2t}}$.
Why doesn't it work for $F(s)=\ln(s)$? According to the above method $f(t)=-\frac{1}{t}$.
Will it work for $F(s)=\ln\left(s+\frac{1}{s}\right)$?
Thank you.