This is exercise 4.5 from Baker Galois Theory:
Use Kaplansky's theorem to find the Galois group of the splitting field $E$ of the polynomial $x^4 +3 \in \mathbb Q[x]$ over $\mathbb Q$. Determine all the subextensions $F \leq E$ for which $F/\mathbb Q$ is Galois.
The statement of Kaplansky's Theorem is given as follows:
4.28. THEOREM (Kaplansky's Theorem). Let $f(X)=X^4+a X^2+b \in \mathbb{Q}[X]$ be irreducible.
(i) If b is a square in $\mathbb{Q}$ then $\operatorname{Gal}(\mathbb{Q}(f(X)) / \mathbb{Q}) \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2$.
(ii) If $b\left(a^2-4 b\right)$ is a square in $\mathbb{Q}$ then $\operatorname{Gal}(\mathbb{Q}(f(X)) / \mathbb{Q}) \cong \mathbb{Z} / 4$.
(iii) If neither $b$ nor $b\left(a^2-4 b\right)$ is a square in $\mathbb{Q}$ then $\operatorname{Gal}(\mathbb{Q}(f(X)) / \mathbb{Q}) \cong \mathrm{D}_8$.
Attempt: By Eisenstein criterion, $f(x)=x^4+3$ is irreducible. Therefore we can apply Kaplansky's theorem. Note that $f(x)=x^4 + ax^2 +b$ where $a=0$ and $b=3$. Then $b$ is not a square in $\mathbb Q$, and neither is $b(a^2-4b)$, so by Kaplansky's theorem we have $\operatorname{Gal}\left( \mathbb Q(f(x))/ \mathbb Q \right) \cong D_8$, the Dihedral group with $8$ elements.
The second part of the question is where I got a bit confused. I believe we can use the Fundamental Theorem of Galois Theory to establish a one-to-one correspondence between subgroups of $D_8$ and subfields $F$ of $E = \mathbb Q(f(x))$ (splitting field) such that $F/ \mathbb Q$ is Galois. But how do you explicitly determine what the subextensions are using the subgroups of $D_8$?