Given the matrix $A \in \Bbb R^{k \times n}$, let the scalar field $f: \Bbb R^n \to \Bbb R$ be defined by $$f(x) := \frac12 \|Ax\|_2^2$$ Calculate the directional derivative $\partial_{v}f(x)$, $v \in \Bbb R^n$ and deduce that $\nabla f(x) = A^T A x$.
Attempt:
$$\partial_{v}f(x) = \lim_{t \rightarrow 0} \frac{f(x+tv) - f(x)}{t}\implies \partial_{v}f(x) = \lim_{t \rightarrow 0} \frac{\|Ax + t Av\|^2 - \|Ax\|^2}{2t}$$
I am unsure how to proceed from here since, to my understanding, $\|Ax + tAv\|^2 - \|Ax\|^2$ cannot be simplified to $\|tAv\|^2$. If it could, $\partial_{v}f(x) = \dfrac{1}{2}\|Av\|^2$.