Let's take from this question the equation for a rotated ellipse that is not centered at the origin:
$$\frac {((x-h)\cos(A)+(y-k)\sin(A))^2}{a^2}+\frac{((x-h) \sin(A)-(y-k) \cos(A))^2}{b^2}=1,$$
where $h, k$ and $a, b$ are the shifts and semi-axis in the $x$ and $y$ directions respectively and $A$ is the angle measured from $x$ axis.
I have also the general equation of a line:
$$ y = \alpha + \beta x $$
Assuming that $\alpha = 0$, how can I find the slope $\beta$ so that the line $y$ is a tangent of the ellipse? There should be two of them.
EDIT: I found also this question, but I don't understand the parameterization. It's basically the same question as mine, but I don't understand why the ellipse is defined by a system of equations and not a single equation; I also don't know what is $t$; it would be helpful if someone could just switch the parameterizations because the question seems to already have an answer.