$$I(t)= t \cdot \int_t^\infty \frac {\sin^2 (u)}{u^2} \mathrm{d}u$$
Let $x=u/t$
$$I(t)=\int_1^\infty \frac{\sin^2 tx}{x^2}dx$$
Integrate by parts and define $y=2tx$, to get
$$I(t)=\sin^2 t+t\int_{2t}^\infty \frac{\sin y}{y}dy$$
Integration by part again,
$$I(t)=\sin^2 t+\frac{1}2\cos2t-t\int_{2t}^\infty \frac{\cos y}{y^2}dy=\frac{1}2-t\int_{2t}^\infty \frac{\cos y}{y^2}dy$$
Next, we show the limit of the last term is $0$
$$\lim_{t\rightarrow \infty} t\int_{2t}^\infty \frac{\cos y}{y^2}dy=\lim_{t\rightarrow \infty} t\cdot\frac{\sin 2t}{4t^2}+2t\int_{2t}^\infty \frac{\sin y}{y^3}dy=\lim_{t\rightarrow \infty} 2t\int_{2t}^\infty \frac{\sin y}{y^3}dy$$
and
$$\lim_{t\rightarrow \infty} \left|2t\int_{2t}^\infty \frac{\sin y}{y^3}dy\right|\le \lim_{t\rightarrow \infty} \left|2t\int_{2t}^\infty \frac{1}{y^3}dy\right|=0$$
Therefore,
$$\lim_{t\rightarrow \infty}I(t)=\frac{1}2$$