We have :
Let $x\geq 1$ then we have :
$$e^x\geq 1+x+x^2/2+x^3/6$$
Then setting $x\to x\ln x$ we have :
$$x^x\geq 1+x\ln\left(x\right)+\frac{x^{2}\ln^{2}x}{2}+\frac{\left(x\ln x\right)^{3}}{6}$$
Using for $x\geq 1$ :
$$\ln x \geq 1-1/x,\ln x\geq 2(x-1)/(x+1)$$
We have :
$$x^{x}\geq 1+x\ln\left(x\right)+\frac{\left(x\cdot\frac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\right)^{2}}{2}+\frac{\left(2x\left(1-\frac{1}{\sqrt{x}}\right)\right)^{3}}{6}$$
Remains to show :
$$x+\left(x-1\right)^{2}+\frac{\left(x-1\right)^{3}}{2}<1+x\ln\left(x\right)+\frac{\left(x\cdot\frac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\right)^{2}}{2}+\frac{\left(2x\left(1-\frac{1}{\sqrt{x}}\right)\right)^{3}}{6}$$
Now we have the intermediate inequality $x\geq 1$:
$1+x\ln\left(x\right)-x\geq \frac{\left(x-1\right)^{2}}{1+x}+\frac{1}{6}\frac{\left(x-1\right)^{3}}{1+x^{3}}\geq \frac{\left(x-1\right)^{3}}{2}+\left(x-1\right)^{2}-\left(\frac{\left(x\cdot\frac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\right)^{2}}{2}+\frac{\left(2x\left(1-\frac{1}{\sqrt{x}}\right)\right)^{3}}{6}\right)$
Dividing by $x$ and introudcing :
$$f\left(x\right)=\frac{1}{x}+\ln\left(x\right)-1-\frac{1}{x}\frac{\left(x-1\right)^{2}}{1+x}-\frac{1}{6x}\frac{\left(x-1\right)^{3}}{1+x^{3}}$$
Then :
$$f'(x)=\frac{\left(x-1\right)^{3}\left(6x^{4}-5x^{3}+9x^{2}-3x+1\right)}{6x^{2}\left(x+1\right)^{2}\left(x^{2}-x+1\right)^{2}}$$
So the minimum is at $x=1$ so one of the side is shown .
For the other side we have $x\geq 1$:
$$\frac{\left(x^{2}-1\right)^{2}}{1+x^{2}}+\frac{1}{6}\frac{\left(x^{2}-1\right)^{3}}{1+x^{6}}-\left(\frac{\left(x^{2}-1\right)^{3}}{2}+\left(x^{2}-1\right)^{2}-\left(\frac{\left(x^{2}\cdot\frac{4\left(x-1\right)}{x+1}\right)^{2}}{2}+\frac{\left(2x^{2}\left(1-\frac{1}{x}\right)\right)^{3}}{6}\right)\right)\geq 0$$
Because :
$$\frac{(x-1)^{4}\left(5x^{10}+6x^{9}+26x^{8}+14x^{7}-13x^{6}-28x^{5}-10x^{4}+8x^{3}+26x^{2}+12x+2\right)}{6(x+1)^{2}(x^{2}+1)(x^{4}-x^{2}+1)}\geq 0$$
So we have shown the inequality for $x\geq 1$
Perhaps a similar path works for $0\leq x\leq 1$