Let us calculate the sum more generally
$$s(n)=\sum _{k=1}^n \frac{(-1)^{k-1} k}{\binom{n+1}{k}}, n=1,2,3,...\tag{1}$$
The result can be written as
$$s (n) = \frac{n+2-(-1)^n \left(n^2+4 n+2\right)}{(n+3) (n+4)}=
\left\{
\begin {array} {ll}
-\frac{n}{4+n} & n\;\;\text {even} \\
\frac{n+1}{n+3} & n\;\;\text {odd} \\
\end {array}
\right. \tag{2}$$
Here is a plot of $s(n)$

it show that for large $n$ the sum oscillates between the borders $\pm 1$.
The proof of $(2)$ starts with observing that the inverse binomial coefficient is related to the beta function for which an integral representation is known:
$$\begin{align}
\frac{k}{\binom{n+1}{k}}=\frac{k \times k!\times (-k+n+1)!}{(n+1)!}=\frac{k \times \Gamma (k+1) \Gamma (-k+n+2)}{\Gamma (n+2)}\\=\frac{k^2 \Gamma (k) \Gamma (-k+n+2)}{\Gamma (n+2)}=k^2 \int_0^1 x^{k-1} (1-x)^{-k+n+1} \, dx
\end{align}\tag{3}$$
The sum to be calculated under the integral is
$$s_i=\sum _{k=1}^n (-1)^{k-1} k^2 x^{k-1} (1-x)^{-k+n+1}\\
=-\frac{1}{x} (1-x)^{n+1}\sum _{k=1}^n k^2 (\frac{-x}{1-x})^{k}\tag{4a}$$
It can be done using Feynman's trick on the geometric sum:
$$\sum _{k=1}^n k^2 z^k=(z \frac{\partial }{\partial z})(z \frac{\partial }{\partial z})\sum _{k=1}^n z^k= (z \frac{\partial }{\partial z})(z \frac{\partial }{\partial z})\frac{z^{n+1}-1}{z-1}\tag{4b}$$
which, after some careful simplications, gives
$$s_i=-(2 x-1) (1-x)^{n+2}-(-1)^n (1-x) \left(-(2 n+3) x+(n+1)^2+2 x^2\right) x^n\tag{4c}$$
The integral over $s_i$ can be written as $s:=i=i_1 + i_2$ where
$$\begin {align}
i_1 & =-\int_0^1 (2 x-1) (1-x)^{n+2} \, dx\overset{1-x\to u} =-\int_0^1 (2 u-1) \left(u^{n+2}\right) \, du\\
& =\frac{2}{n+4}-\frac{1}{n+3}
\end {align}\tag{5a}$$
$$\begin {align}
i_2 & = \int_0^1 -(-1)^n (1-x) x^n \left(-(2 n+3) x+(n+1)^2+2 x^2\right) \, dx\\
& = (-1)^{n+1} \left(-\frac{2}{n+4}-\frac{1}{n+3}+1\right)
\end {align}\tag{5b}$$
Adding the expressions in $(5a)$ and $(5b)$ proves $(2)$ which is easy to see in the formula with the parity alternatives.
The specific value to be calculated in the OP, is $s(19) = \frac{19+1}{19+3}=\frac{20}{22}=\frac{10}{11}$.
Discussion
With the same method (and with the help of a CAS which knows special functions) we can calculate the generating sum
$$\begin {align}
g(n,z) & = \sum _{k=1}^n \frac{z^k}{\binom{n+1}{k}}=\int_0^1 \left(\sum _{k=1}^n x^{k-1} z^k (1-x)^{-k+n+1}\right) \, dx\\
& =\int_0^1 \frac{(x-1) z \left((1-x)^n-x^n z^n\right)}{x z+x-1} \, dx\\
& =\frac{1}{(n+1) (n+2)}(-(n+2) z^{n+1} \, _2F_1(1,n+1;n+2;z+1)\\
& +(n+1) z^{n+1} \, _2F_1(1,n+2;n+3;z+1)\\
& +(n+2) z \, _2F_1(1,1;n+2;z+1)\\
& -(n+1) \, _2F_1(1,1;n+3;z+1)+n+2)
\end{align}\tag{a}$$
where $_2F_1(a,b;c;y)$ is the hypergeometric function. In the "physical" range $z\le 0$ these assume real values.
And we can find e.g.
$$\begin{align}s_2(n) & = \sum _{k=1}^n \frac{(-1)^{k-1} k^2}{\binom{n+1}{k}}\\
& =
\frac{(n+1) \left(n+2-(-1)^n \left(n^3+8 n^2+16 n+2\right)\right)}{(n+3) (n+4) (n+5)}\\
& \underset{n \to \infty} \simeq (-1)^{n+1} \left(n-3+\frac{13}{n}\right)+\frac{1}{n}+O(\frac{1}{n^2})\end{align}\tag {b}$$