Let $\zeta_{2023}=e^{2\pi i /2023}$ be a primitive $2023$th root of unity. Describe :
- Quadratic subfields of $\mathbb{Q}(\zeta_{2023})$.
- Quartic subfields $E$ of $\mathbb{Q}(\zeta_{2023})$ such that $\mathcal{Gal}(E/\mathbb{Q})\cong \mathbb{Z}/4\mathbb{Z}$.
Since $2023=7\cdot 17^2$, we have $\mathbb{Q}(\zeta_{2023})=\mathbb{Q}(\zeta_{7})\cdot\mathbb{Q}(\zeta_{17^2})$, and then $$\begin{align} \mathcal{Gal}(\mathbb{Q}(\zeta_{2023})/\mathbb{Q})&\cong\mathcal{Gal}(\mathbb{Q}(\zeta_{7})/\mathbb{Q})\times\mathcal{Gal}(\mathbb{Q}(\zeta_{17^2})/\mathbb{Q})\cong(\mathbb{Z}/7\mathbb{Z})^*\times(\mathbb{Z}/17^2\mathbb{Z})^* \\ &\cong\mathbb{Z}/6\mathbb{Z}\times\mathbb{Z}/17\cdot16\mathbb{Z} \end{align} $$
Furthermore $(\mathbb{Z}/7\mathbb{Z})^*=\langle [3]_7 \rangle$ and $(\mathbb{Z}/17^2\mathbb{Z})^*=\langle [3]_{17^2} \rangle$, thus $\mathcal{Gal}(\mathbb{Q}(\zeta_{7})/\mathbb{Q})=\langle\sigma\rangle$ with $\sigma(\zeta_7)=\zeta_{7}^3$, and $\mathcal{Gal}(\mathbb{Q}(\zeta_{17^2})/\mathbb{Q})=\langle\tau\rangle$ with $\tau(\zeta_{17^2})=\zeta_{17^2}^3$. Finally, by extending $\sigma$ and $\tau$ to automorphisms of $\mathbb{Q}(\zeta_{2023})$, we get $$ \mathcal{Gal}(\mathbb{Q}(\zeta_{2023})/\mathbb{Q})=\langle\sigma\rangle\times\langle\tau\rangle $$
The only subgroups of index $2$ in $\mathcal{Gal}(\mathbb{Q}(\zeta_{2023})/\mathbb{Q})$ are $$ \begin{align} H&:=\langle\sigma^2\rangle\times\langle\tau\rangle\cong\mathbb{Z/3Z}\times\mathbb{Z/17\cdot 16Z} \\ L&:=\langle\sigma^4\rangle\times\langle\tau\rangle\cong\mathbb{Z/3Z}\times\mathbb{Z/17\cdot 16Z} \\ K&:=\langle\sigma\rangle\times\langle\tau^2\rangle\cong\mathbb{Z/6Z}\times\mathbb{Z/17\cdot 8Z} \end{align} $$ Thus, the only quadratic subfield are $\mathbb{Q}(\zeta_{2023})^H$, $\mathbb{Q}(\zeta_{2023})^L$ and $\mathbb{Q}(\zeta_{2023})^K$. Unfortunately, I couldn't find an explicit description of these subfields through generators.
Again, with some groups theory arguments I could find the desired subgroups of $\mathcal{Gal}(\mathbb{Q}(\zeta_{2023})/\mathbb{Q})$, but I couldn't get an explicit description of the corresponding subfields.