The Laplace transform of the function in question can be calculated rather easily. One can Laplace transform in the time coordinate to obtain
$$s\hat F(i,s)=f(i,0)+ah(i)\hat F(i,s)+bh(i)\int_0^\infty h(x)\hat F(x,s)dx$$
Solving for the $\hat F$ yields
$$\hat F(i,s)=\frac{f(i,0)}{s-ah(i)}+\frac{bh(i)}{s-ah(i)}\int_0^\infty h(x)\hat F(x,s)dx$$
Integrate the equation against $h(i)$ and solve the now self-consistent equation to obtain the value of the inner product $\langle h,\hat F\rangle:=\int_0^\infty dx h(x)\hat F(x,s)$
$$\langle h,\hat F\rangle(s)=\frac{\int_0^\infty dx\frac{f(x,0)h(x)}{s-ah(x)}}{1-b\int_0^\infty dx\frac{h^2(x)}{s-ah(x)}}$$
For the specific values provided in the question, the integrals can be computed analytically:
$$\int_0^\infty \frac{h(x)}{s+2h(x)}dx=\frac{1}{\sqrt{2s}}\tan^{-1}\sqrt{\frac{2}{s}}$$
$$\int_0^\infty \frac{h^2(x)}{s+2h(x)}dx=\frac{1}{2}\left(1-
\sqrt{\frac{s}{2}}\tan^{-1}\sqrt{\frac{2}{s}}\right)$$
which finally yields for the two functions in question
$$\langle{h,\hat F}\rangle=\frac{\tan^{-1}\sqrt{\frac{2}{s}}}{\sqrt{\frac{s}{2}}\left(1+\sqrt{\frac{s}{2}}\tan^{-1}\sqrt{\frac{2}{s}}\right)}$$
$$\hat F(i,s)=\frac{(i+1)^2}{2+s(i+1)^2}+\frac{1}{s(i+1)^2+2}\frac{\tan^{-1}\sqrt{\frac{2}{s}}}{\sqrt{\frac{s}{2}}\left(1+\sqrt{\frac{s}{2}}\tan^{-1}\sqrt{\frac{2}{s}}\right)}$$
Inverting these LT's seems to be at least upon a first glance, nontrivial, however a numerical inversion is always possible.