I am looking to answer in fundamental rigour the following, but I'm unsure how to explain a crucial step:
Let $N^{(1)}(t), N^{(2)}(t)$ be independent Poisson processes with respective rates $\lambda_1,\lambda_2$. Let $T=\inf\{t: N^{(1)}(t)>0\}$ and $X=N^{(2)}(T)$. What is $\mathbb{E}[X|\sigma(T)]?$
My idea is this.
See that $T\sim \text{Exp}(\lambda_1)$, $\sigma(T)=\sigma(\{T\geqslant t\}:t\geqslant 0)$, and that $X\mathbb{1}_{\{T=t\}}\sim \text{Po}(\lambda_2t)$, where $\mathbb{1}_\cdot$ is an indicator function.
Then
\begin{align} \mathbb{E}[X\mathbb{1}_{\{T\geqslant t\}}]& = \sum_{x=0}^\infty x \mathbb{P}(X\mathbb{1}_{\{T\geqslant t\}}=x) \\ & =\sum_{x=0}^\infty x \int_t^\infty \mathbb{P}(X\mathbb{1}_{\{T= s\}}=x) \lambda_1 e^{-\lambda_1 s}ds \end{align}
and after an application of Fubini and using $$ \sum_{x=0}^\infty x\mathbb{P}(X\mathbb{1}_{\{T= s\}}=x)= \mathbb{E}[X\mathbb{1}_{\{T=s\}}]=\lambda_2 s $$ the result follows straightforwardly to show that $\lambda_2 T$ is the answer almost surely.
However I am not sure if it is correct to say $$ \mathbb{P}(X\mathbb{1}_{\{T\geqslant t\}}=x)= \int_t^\infty \mathbb{P}(X\mathbb{1}_{\{T= s\}}=x) \lambda_1 e^{-\lambda_1 s}ds $$ or how I could explain it rigorously. I see the issue that $\{T=t\}$ is null so technically it doesn't work.
Any input would be great!