I think the confussion is due to the notation.
For Hypergeometric functions the most common notation is to define the rising factorial or Pochhammer polynomial as:
$$(x)_{n} = \prod_{j=0}^{n-1}(j+x) = x(x+1)(x+2)\cdots(x+n-1) = \frac{\Gamma(x+n)}{\Gamma(x)}$$
Note that if $x = -a$ with $a>0$
\begin{align*}
(-a)_{n} = (-a)(-a+1)\cdots(-a+n-1) =& (-1)^na(a-1)(a-2)\cdots(a-n+1)\\
=& (-1)^n(a-n+1)_{n} \tag{1}
\end{align*}
$(a-n+1)_{n}$ is the falling factorial. Take a lot of care because some authors and websites use the notation $(a)_{n}$ for the falling factorial.
With this definition note that
$$ (a-n+1)_{n} = \frac{\Gamma(a+1)}{\Gamma(a-n+1)} = \frac{a!}{(a-n)!}$$
So the correct definition of the binomial coefficient is
$$ \binom{a}{n} = \frac{a!}{(a-n)!n!} = \frac{(a-n+1)_{n}}{n!}$$
not
$$ \binom{a}{n} = \frac{(a)_{n}}{n!} $$
So if we have the series
$$ {}_pF_q(a_1,...,a_q;b_1,...,b_q;z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}\cdots(a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} \frac{z^n}{n!}$$
and at least of the $a_{i} = -m$ with $m\in \mathbb{N}$
\begin{align*} {}_pF_q(a_1,...,a_q;b_1,...,b_q;z) = &\sum_{n=0}^{\infty} \frac{(a_{1})_{n}\cdots(-m)_{n}\cdots (a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} \frac{z^n}{n!}\\
=& \sum_{n=0}^{\infty} \frac{(a_{1})_{n}\cdots(-1)^n(m-n+1)_{n}\cdots (a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} \frac{z^n}{n!} \quad (\textrm{from (1)})\\
=& \sum_{n=0}^{m} \frac{(a_{1})_{n}\cdots(m-n+1)_{n}\cdots (a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} \frac{(-z)^n}{n!} \quad ((m-n+1)_{n}=0 \quad \textrm{ if } n>=m+1)\\
=& \sum_{n=0}^{m} \binom{m}{n} \frac{(a_{1})_{n}\cdots (a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} (-z)^n
\end{align*}
From this is easy to conclude that if we have two negative parameters $-m,-v$ with $m,v \in \mathbb{N}$
$$\sum_{n=0}^{\infty} \frac{(a_{1})_{n}\cdots(-m)_{n}(-v)_{n}\cdots (a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} \frac{z^n}{n!}\\
= \sum_{n=0}^{\min(m,v)} \frac{(a_{1})_{n}\cdots(-m)_{n}(-v)_{m}\cdots (a_p)_{n}}{(b_1)_{n}\cdots (b_q)_{n}} \frac{z^n}{n!}$$
mpmath.hyp3f2
to verify it but even assigning all nonnegative arguments to 1, it takes a little too long to calculate by hand for verification :) – ck1987pd Apr 25 '23 at 13:32