Let $f(x)$ be twice differentiable on $[a, +\infty)$ and $\lim_{n\rightarrow\infty} f(n)$ exist. If $\lim_{x\rightarrow+\infty} f''(x)$ exists, prove that $\lim_{x\rightarrow+\infty} f(x)$ exists and $$\lim_{x\rightarrow+\infty} f'(x)=\lim_{x\rightarrow+\infty} f''(x)=0$$ According to the answer here, we know that
If $\lim_{x\rightarrow\infty} f(x)$ exists and $f''$ is bounded, then $\lim_{x\rightarrow\infty} f'(x)=0$.
However, in this problem, the limit of $f$ is along the sequence of positive integers. How can we prove this? Any assistance or feedback regarding this issue would be highly appreciated.