For $0\le\alpha\le\pi$, $0\le\beta\le\dfrac{\pi}{2}$, $0\le\alpha+\beta\le\pi$:
Theorem. The sum identity for sine states that
$$\sin{(\alpha+\beta)}=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta).$$
Proof. Suppose $\triangle{ABC}$ is a triangle with sides $\overline{BC}=a$, $\overline{AC}=b$ and $\overline{AB}=c$. Let $\angle{BAC}=\alpha$, $\angle{CBA}=\beta$ and $\angle{ACB}=\gamma$. Recalling that the area of a triangle can be expressed as $\Delta=\dfrac{1}{2}bc\sin{\alpha}$, substituting from the cosine rule and keeping in mind the unit circle definition of sine (from where it follows directly that supplementary angles have the same sine), $$\begin{aligned} \sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta) &= \left(\frac{2\Delta}{bc}\right)\cos(\beta)+\left(\frac{2\Delta}{ac}\right)\cos(\alpha)\\&=\frac{2\Delta}{c}\left(\frac{\cos(\beta)}{b}+\frac{\cos(\alpha)}{a}\right)\\ &=\frac{2\Delta}{c}\left(\frac{a^2+c^2-b^2}{2abc}+\frac{b^2+c^2-a^2}{2abc}\right)\\&=\frac{2\Delta}{ab}\\&=\sin(\gamma)\\&=\sin{(\pi-(\alpha+\beta))}\\&= \sin{\left(\alpha+\beta\right)}.\end{aligned}$$ Several proofs are given here.
Is this proof correct? If it's correct, I suspect it won't be hard to find a proof for its companion $\cos{(\alpha+\beta)}$.