Let $X$ be a metric space , $A\subseteq X$.
Let $d(x,A)=\inf_Ad(x,a)$.
Prove $d(\cdot,A):X \to \mathbb{R}$ is uniformly continuous.
$f:X \to Y$ is said to be uniformly continuous if for every $\epsilon>0$ there exists $\delta>0$ so that $d_Y(f({x_1}),f({x_2}))<\epsilon$ for all $x_1,x_2 \in X$ with $d_X(x_1,x_2)<\delta.$
In my problem $Y=\mathbb{R}$.
Hence I have to prove $d_\mathbb R(\inf_Ad(x,a),\inf_Ad(y,a)))<\epsilon \implies d_X(x,y)<\delta$
Honestly I am a little bit confused about this problem , appreciate any help.